Tutorial 29: Lipid Metabolism and Fatty Acid Oxidation

Goals:
\checkmark Be able to give an overview to describe what is happening in fatty acid oxidation, and be able to use a copy of the fatty acid spiral to answer questions about the reactions involved.
\checkmark Be able to calculate ATP yields from catabolism of different fatty acids.

Fatty Acid Oxidation

- Overview of the Fatty Acid Spiral: A fatty acid is activated as a fatty acyl-CoA that can enter the fatty acid spiral for oxidation. It takes 2 ATP for this activation. Two carbons at a time are cleaved from the fatty acyl-CoA as acetyl-CoA. This cleavage continues until the entire fatty acid has been converted into acetyl-CoA. The fatty acid spiral occurs in the mitocondrial matrix.
- Details of the Fatty Acid Spiral:
- In step 1, two hydrogen are removed to create a double bond between the alpha and beta carbon. FAD acts as the oxidizing agent.
- In step 2, the double bond is hydrated to form a secondary alcohol.
- In step 3, the secondary alcohol is oxidized to a ketone. NAD+ is the oxidizing agent.
- In step 4, two carbons break off as acetyl-CoA, leaving a fatty acyl-CoA that is 2 carbons shorter.
- Steps 1-4 continue until all of the carbons have been converted into acetyl-CoA.
- NOTE: For fatty acids with odd numbers, the final turn in the spiral yields acetyl-CoA and propionyl-CoA (a 3 carbon molecule). Propionyl-CoA is converted into succinyl-CoA and enters the Krebs Cycle.
- NOTE 2: Unsaturated fatty acids involve an additional step to isomerize the cis bond into the trans geometry seen in the Fatty Acid Spiral.
- Net Result from Fatty Acid Spiral:
-2 ATP to activate
+1 FADH2 per turn which results in 2 ATP in ETC/Ox Phos per turn
$+1 \mathrm{NADH} / \mathrm{H}+$ per turn which results in 3 ATP in ETC/Ox Phos per turn
Total ATP = (5 ATP x \# turns) -2 ATP

Fatty Acid Oxidation Continued

Enzyme

Acyl-CoA
dehydrogenase
Enoyl-CoA hydratase
beta-hydroxyacylCoA dehydrogenase

Acyl-CoA
acetyltransferase

