Tutorial 17: An Introduction to Organic Functional Groups

Goals:

- ✓ Be able to recognize some common functional groups.
- ✓ Learn how to name organic molecules containing a functional group by the IUPAC nomenclature system.
- ✓ Learn some relevant common names of organic molecules containing a functional group.
- √Know some of the reactions that alkanes and alkenes undergo.

Functional Groups

When a small portion of a molecule is responsible for the reactivity of that molecule, we call that small portion a functional group.

Basic IUPAC Nomenclature for Molecules with a Functional Group

Hydrocarbons:

- Alkanes: Use the -ane ending
- Alkenes: Use the –ene ending; specify the double bond location if necessary
- Alkynes: Use the –yne ending; specify the triple bond location if necessary
- Aromatics: The simplest is benzene; the term aromatic refers to the class of organic compounds containing benzene-like rings; benzene contains six equivalent bonds

Functional Groups Containing O and/or N:

- Alcohol: Replace the -e ending with the -ol ending; use number to specify alcohol location if there are 3 or more carbons in the chain
 - Examples: ethanol, 2-propanol
- Amine: Name the alkyl group with the –yl ending and the suffix –amine (primary amines only)
 - Example: propylamine
 - NOTE: IUPAC also accepts naming amines as alkanamines where the -e ending is replaced by the word -amine (propanamine)

IUPAC Nomenclature for Molecules with a Functional Group Continued

- Aldehyde: Replace the -e ending with the -al ending; in condensed formulas aldehydes are often shown as –CHO.
 - Examples: methanal and ethanal
 - NOTE: common names formaldehyde and acetaldehyde are often used in place of these two IUPAC names
- Ketone: Replace the -e ending with the -one ending; specify the location of the carbonyl
 when there are more than 3 carbons in the chain
 - Example: 4-octanone
 - NOTE: acetone is the common name for propanone
- Carboxylic Acid: Replace the -e ending with -oic acid ending
 - Example: methanoic acid and ethanoic acid
 - NOTE: common names formic acid and acetic acid are often used in place of these two IUPAC names; common names are used for fatty acids
- Amide: Replace the -e ending with -amide ending
 - Example: ethanamide
 - NOTÉ: acetamide is often used in place of this IUPAC name
- Ester: Name the alkyl group off of the oxygen, then name the alkyl group that includes the carbonyl, replace the –e ending with the -oate ending
 - Example: ethyl butanoate
 - NOTE: formate is commonly used in place of methanoate and acetate is commonly used in place of ethanoate

4

Reactions of Hydrocarbons

•	Alkanes: Not very reactive. Takes energy from a spark or heat to get over the activation energy barrier. – Combustion:
	Halogenation:
•	Alkenes: more reactive than alkanes. – Combustion:
	Hydrogenation:
	Halogenation:
	Hydrohalogenation:
	Hydration:

Aromatics: have their own unique reactivity.

Alkynes: similar to alkenes.