Tutorial 9: Lewis Structures, Electron Pair Geometry, and Molecular Geometry

Goals:

- ✓ To be able to draw 2-D representations of molecular compounds (Lewis structures).
- ✓ Understand the 3-D shape (molecular geometry) of molecular compounds.

1

Drawing Lewis Structures

- 1. Add up all of the valence electrons for the atoms involved in bonding
- 2. Write the symbols for the elements and show connectivity with single bonds (remember that a single bond had 2 electrons being shared).
 - a. The central atom is typically the one there is only one of or the fewest of.
 - b. If there is one of several atoms, they will usually be written in order.
 - c. H is ALWAYS terminal
- 3. Complete the octet for the atoms bonded to the central atom (NOT FOR HYDROGEN).
- 4. Place the leftover electrons on the central atom.
- 5. If octet is not satisfied on the central atom then form double or triple bonds as needed.
- **NOTE:** There are many exceptions to the octet rule, but that is a more advanced topic and will not be considered here.

Molecular Shape (Geometry)

VSEPR Theory: The repulsions between electrons will result in the placement of electron pairs (bonding or lone pairs) as far apart as possible in 3-D space. This causes molecules to take on very predictable shapes.

<u>Number of</u> <u>bonds</u>	<u>Number of</u> <u>lone pair</u> <u>electrons</u>	<u>Electron pair</u> <u>geometry</u>	<u>Molecular</u> geometry
2	0	linear	linear
3	0	trigonal planar	trigonal planar
2	1	trigonal planar	bent
4	0	tetrahedral	tetrahedral
3	1	tetrahedral	pyramidal
2	2	tetrahedral	bent